Forest Ecology and Management 260 (2010) 1579-1591

Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

Developing and testing a landscape-scale habitat suitability model for fisher
(Martes pennanti) in forests of interior northern California

William J. Zielinski®*, Jeffrey R. DunkP®, J. Scott Yaeger¢, David W. LaPlante 4

3 USDA Forest Service, Pacific Southwest Research Station, 1700 Bayview Drive, Arcata, CA 95521, USA

b Department of Environmental Science and Management, Humboldt State University and USDA Forest Service, Pacific Southwest Research Station, Arcata, CA 95521, USA
¢ U.S. Fish and Wildlife Service, Yreka Fish and Wildlife Office, Yreka, CA 96097, USA

d Natural Resource Geospatial, Yreka, CA 96097, USA

ARTICLE INFO ABSTRACT

Article history:
Received 15 April 2010
Received in revised form 28 July 2010

The fisher is warranted for protection under the Endangered Species Act in the western United States and,
as such, itis especially important that conservation and management actions are based on sound scientific
information. We developed a landscape-scale suitability model for interior northern California to predict

Accepted 5 August 2010 the probability of detecting fishers and to identify areas of important fisher habitat. Previous models

have been extrapolated to this region, but our model was developed from the results of strategically
IF(i?lli:rdS: planned detection surveys within the study area. We used generalized additive modeling to create a
Martes pennanti model that best distinguished detection (n=55) from non-detection (n1=90) locations on the basis of
California environmental covariates. Four models were averaged to create a final model including the following
Klamath variables: Amount of Dense Forest, Percent Hardwood, Medium & Large Trees, Structurally Complex

Forest, Adjusted Elevation, Insolation Index and Predicted Abundance of Mammalian Prey. This model was
well calibrated and correctly classified fisher detections 83.6% of the time and absences (non-detections)
70.0%. Independent test data were classified less well; 76.2% and 53.0%, respectively, perhaps a result of
differences in the spatial and temporal characteristics of the data used to build versus test the model.
The model is the first comprehensive portrayal of the distribution and configuration of habitat suitability
in this region and provides managers a tool to monitor habitat change over time and to plan vegetation
treatments. It also represents an example for the development of similar models for dispersal-limited
mammals with large area needs, as well as other species associated with late-successional forests in
northern California.
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1. Introduction

Models that predict species distributions can help under-
stand ecological requirements and assist in conservation planning
(Guisan and Zimmerman, 2000; Pearce and Boyce, 2006; Scott et
al., 2002; Guisan and Thuiller, 2005; Kearney, 2006; Zielinski et
al., 2006a). Regional landscape-scale suitability models statistically
relate field survey results to a set of environmental characteristics.
These characteristics are presumed to directly influence elements
of the species’ niche, or correlate with such elements. The out-
put from such models, which are typically in the form of a map
of predicted occurrence or predicted habitat suitability (Hirzel et
al., 2006), estimate the probability of finding a species in areas
that have not been surveyed. These features make it possible to
compare the predicted probability of occurrence or habitat suit-
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ability among land ownership types (e.g., Carroll and Johnson,
2008), to identify unoccupied but apparently suitable areas for
reintroduction (Carroll et al., 2003; Seddon et al., 2007), to com-
pare habitat suitabilities among species (Zielinski et al., 2006a;
Carroll et al, in press) and other applications for conservation
planning. Ultimately we can only understand niche relations, and
identify limiting resources, through experimentation and long-
term demographic studies (Austin, 1985; Anthony et al., 2006). In
the absence of such studies, however, empirically based statistical
models of species-environment associations provide landscape-
scale inferences that can assist in immediate conservation planning
needs.

In the western U.S., the fisher occurred historically through-
out the northern Rocky Mountains, Cascade and Coast Ranges
and the Sierra Nevada (Gibilisco, 1994). The range and abundance
of this forest-dwelling carnivore have decreased dramatically in
the West due to commercial trapping, changes in forest struc-
ture associated with logging and altered fire regimes, increased
human access, and habitat loss to urban and recreational devel-
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opment (Powell and Zielinski, 1994; Zielinski et al., 2005). The
fisher occupies less than half of its historical range, as described
in the early 1900s (Grinnell et al., 1937), and remnant populations
in the southern Sierra Nevada are separated by >400 km from the
nearest populations in northern California (Zielinski et al., 1995;
Carroll et al., 1999). Population decline and fragmentation in the
Pacific states has reduced genetic diversity (Drew et al., 2003) and
the fisher was deemed “warranted but precluded” for listing under
the Endangered Species Act (U.S. Fish and Wildlife Service, 2004).
Quantitative predictive mapping of habitat suitability will sup-
port future determinations of the regulatory status of the fisher,
enable evaluation of potential impacts of land management activi-
ties, assist in planning reintroductions, and help identify important
habitat conditions for fishers.

The fisher has been the subject of a number of previous
landscape-scale habitat modeling efforts in California. It is easily
detected using noninvasive survey methods (remote cameras: Kays
and Slauson, 2008, track-plate stations: Ray and Zielinski, 2008)
and these methods have been used in standard protocols (Zielinski
and Kucera, 1995; Zielinski et al., 2005) to generate systematically
collected, independently verifiable (McKelvey et al., 2008) and spa-
tially precise survey data. Resulting data on the detections and
non-detections have been used to build statistical landscape-scale
habitat models for the fisher in northwestern California (Carroll
et al,, 1999; Davis et al.,, 2007), portions of the Sierra Nevada
(Campbell, 2004; Davis et al., 2007; Spencer et al., in press) and
statewide (Davis et al., 2007).

A predictive landscape habitat model for the fisher developed
specifically for interior northern California in the eastern Kla-
math Mountains region is currently lacking. Unlike other regions
of California (e.g., Zielinski et al., 2005), prior to our work there
was no systematically collected survey data for the majority of
our study region. Nonetheless, predictions for the western por-
tion of our study region were derived from a habitat modeling
exercise in northwestern California (Carroll et al., 1999) and predic-
tions for the entire study region were derived from characteristics
associated with fisher detections elsewhere (Davis et al., 2007).
However, characteristics of fisher habitat, diet and genetics, vary
substantially in different parts of the state (Zielinski et al., 1999,
2004a,b; Wisely et al., 2004; Golightly et al., 2006; Davis et al.,
2007). The poor performance of a landscape habitat model for the
southern Sierra Nevada at predicting fisher detections in north-
ern California and vice versa (Davis et al., 2007) demonstrates the
need to develop and test specific models for the Klamath region.
Moreover, fisher habitat in the more western coastal forests is pre-
dicted by spatial phenomena related to east-west precipitation
gradients and geographic predictors (Carroll et al., 1999); thus,
extrapolating that model to our study area would not be appro-
priate.

Here, we report a new landscape-scale habitat suitability model
(hereafter landscape habitat model) for the fisher in north-central
California that we test with an independent data set. We use
a systematic survey approach that provides an unbiased sample
from various land ownerships in the study area. Unlike pre-
vious large-scale survey and modeling efforts for the fisher in
California, which were conducted primarily on public land, this
is also the first regional fisher sampling effort to deliberately
seek inclusion of non-federal lands. Because conservation deci-
sions can be based on such predictive models, incorporating
lands with a more complete range of past and current man-
agement objectives and practices is needed to fully understand
the relationships between fisher occurrence and environmental
characteristics. We evaluate the validity of our model using inde-
pendent data and conclude by offering suggestions for potential
applications of the model in both management and conservation
contexts.

2. Methods
2.1. Study area

The 2,145,000 ha study area was primarily forested land in
Del Norte, Humboldt, Siskiyou, Trinity and Shasta Counties, Cal-
ifornia (Fig. 1). Public land represents 1,502,000 ha (70%) of the
area of which 52% is wilderness and Late-Successional Reserves
(a special designation under the Northwest Forest Plan [USDA and
USDI, 1994] a bioregional conservation plan that applies to fed-
eral lands within the study area). Private land, where the dominant
land use is commercial forestry, comprises 642,600 ha (30%). Cli-
matic conditions change from wetter to drier and to more variable
temperatures when moving from northwest to southeast. Average
annual precipitation ranges from 46 to 305cm a year (Miles and
Goudey, 1997). Elevation ranges from 71 to 4350 m with persis-
tent snow typically occurring above ~1500 m during the winter.
Douglas-fir (Pseudotsuga menziesii)/mixed evergreen-hardwood is
the most extensive forest type in the Klamath region with white
and red fir (Abies concolor and Abies magnifica, respectively) found
at higher elevations (Sawyer and Thornburgh, 1977). In the eastern
portion of the study area, where it joins with the Cascade Range,
there are more Xxeric forest types which are dominated by pine
(Pinus ponderosa and Pinus sabiniana) and deciduous oaks (Quercus
garryana and Quercus kelloggii).

2.2. Fisher survey data

The survey data (Fig. 1) came from three sources: (1) new field
surveys, primarily in the center of the study area, conducted in 2005
and 2006 (n=66 sample units), (2) surveys on the eastern margin
of the study area that were conducted in 2002 as part of a previ-
ous study (Davis et al., 2007) (n=21 sample units), and (3) surveys
on the western margin of the study area that were conducted in
1996-1997 that were also part of a previous study (Carroll et al.,
1999) (n=58 sample units). Twenty-eight (19.3%) of the sample
units were on private land. All surveys (n =145 sample units) used a
pre-existing national systematic sampling grid (based on the Forest
Inventory and Analysis [FIA] system; Bechtold and Patterson, 2005)
as the basis for selecting sample units. The FIA grid is a contiguous
lattice of hexagonal cells, each approximately 2430 ha in size (see
Bechtold and Patterson, 2005 for details), but we included in our
sample only every other hexagon in each east-west row within the
lattice. Because of the offset nature of the hexagons among rows,
this resulted in a sample grid of approximately 10.9 km spacing
between points within the same row and 7.7 km spacing between
the nearest sample points on adjacent rows. This spacing was cho-
sen on the basis of average fisher home range sizes in California
(Zielinski et al., 2004b) to minimize the possibility that the same
fisher would be detected at more than 1 sample unit.

We were unable to conduct surveys at all the sample units
we originally identified within our study area. Reasons for
exclusion included: safety concerns, accessibility, location in
unsuitable areas, and strategic choices due to limited funding.
At each selected hexagon we established a sample unit com-
posed of six sooted and baited enclosed track-plate stations. A
track-plate station was placed as close as possible to the FIA
grid cell’s center, and the remaining five stations were posi-
tioned at 72° intervals approximately 500m from the center
station (Zielinski et al., 2005). The track plate consisted of an
aluminum plate (20cm x 76.2 cm x 0.1 cm). The half of the plate
closest to the opening was sooted with either carbon from an
acetylene torch or photocopier toner ink (Belant, 2003), and the
remainder was covered with white contact paper and enclosed
in a box made of corrugated plastic. The track-plate station was
baited with raw chicken at each visit and a scent lure (Gusto,
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Fig. 1. The study area, in interior northern California (dotted line), and the sample units that detected (black circles) and did not detect (white circles) a fisher during a 16-day

survey period.

Minnesota Trapline Products, Pennock, MN, USA) on the 1st
and the 5th visits to each station. Field crews returned to check
and rebait the track stations at 2-day intervals during a 16-day
sampling period, for a total of 8 visits. The tracks of most species
detected were distinguished by species-specific characteristics
of their tracks (Taylor and Raphael, 1988; Zielinski and Truex,
1995) and the use of a voucher collection of reference tracks
(http://www.fs.fed.us/psw/topics/wildlife/mammal/tracks.shtml).
Most sampling (68%) was conducted between 1 June and 1 Novem-

ber. A verified fisher detection at any of the six track-plate stations
in the sample unit, and during any of the eight sampling occasions,
resulted in “fisher detected” being recorded for that sample unit.

2.3. Environmental predictor variables

We considered 11 categories of landscape-scale predictor vari-
ables: climate, topography, linear features (roads and streams),
vegetation cover type, classified habitat type (California Wildlife
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Habitat Relationships [CWHR] system; California Department of
Fish and Game 1992), vegetation density, tree size class, land-
scape arrangement, landscape diversity, disturbance and potential
mammalian prey habitat (Appendix A). We assessed all predictor
variables ata 100 m (1 ha) pixel size within a 5 km? circular moving
window centered on each pixel in the study area.

We derived climatic variables from PRISM 800-m gridded data
for mean monthly and annual precipitation and mean daily temper-
ature for the period 1971-2000, resampled to 100-m pixels (PRISM
Climate Group, http://www.prismclimate.org). We derived snow
data from SNODAS (Snow Data Assimilation System; National Snow
and Ice Data Center) as mean maximum daily snow depth for the
period of January-March, 2005. We derived topographic variables
from USGS NHDPIus 30-m gridded digital elevation data resampled
to 100 m (NHDPlus; a version of the National Elevation Dataset).
Variables derived from elevation data include latitude-adjusted
elevation (Schoenherr, 1992), topographic relief, southwest expo-
sure index (Franklin, 2003), mean solar insolation index (Gustafson
et al., 2003), and aspect 225 (proportion of local landscape with an
aspect of 180-270°).

We derived roads primarily from USDA Forest Service Region
5 (California) Northwest Forest Plan (NWFP; USDA and USDI,
1994) transportation data, compiled from travel-routes data for
all California national forests within the NWFP region. We derived
perennial stream density from compiled National Hydrography
Dataset High Resolution data. Both road and stream densities were
represented as km/km? within the 5-km?2 moving window.

We derived landscape-scale vegetation variables from USDA
Forest Service Existing Vegetation (EVEG) data (USDA, 2007;
http://www.fs.fed.us/r5/rsl/clearinghouse/cite.shtml). ~ Approxi-
mately 90% of the study area includes EVEG data that was updated
in 2003 or 2004; the balance was updated from 1998 t01999. Thus,
the vegetation data available for prediction have roughly the same
temporal characteristics as the fisher survey data. We extracted
cover type, tree size class and vegetation density class variables
from EVEG as the proportion of pixels within the 5-km? moving
window that met the criteria for each variable within these classes.

We also used EVEG vegetation data to generate a CWHR fisher
habitat suitability rating. Based on expert judgment, CWHR rates
the suitability of each combination of cover type, canopy closure
class, and tree size class as high (1.0), medium (0.66), low (0.33),
or unsuitable (0), and calculates an overall habitat suitability rating
based on the mean of the separate scores for ‘reproduction’, ‘cover’
and ‘feeding’. Like others before us (Davis et al., 2007), we believe
that current CWHR system was in error in assigning high suitability
scores to some forest types, consequently we modified the ratings
to create “CWHR2” scores (Appendix A).

The landscape arrangement of vegetation types was calculated
by evaluating patch sizes, perimeter—area ratios and nearest neigh-
bor distances within the 5-km? moving window: (1) for CWHR
vegetation types classified as high reproductive value and (2) to
distinguish CWHR patches with habitat scores >0 from those with
habitat value=0 (Appendix A). Landscape arrangement variables
were derived using FRAGSTATS (McGarigal et al., 2002).

California fishers have a broad diet that includes a wide variety
of animal prey, fruit, and insects (Zielinski et al., 1999; Golightly
et al., 2006). Landscape diversity was a category of predictor vari-
ables intended to reflect plant community diversity, which in turn
may represent the diversity of prey available to fishers. The diver-
sity of CWHR vegetation classes, and combinations therein, within
each 5-km? moving window, were represented using the Shannon
Diversity index (Shannon and Weaver, 1949). We also attempted to
represent the relative importance of fisher prey more directly, by
using the CWHR system to determine the relative value of habitat
for mammalian prey species within 5-km? moving windows areas.
Using information about the fisher diet in northwestern California

(Golightly et al., 2006), we created two variables to index the poten-
tial abundance of dominant mammalian prey (mammals constitute
most of the dietary items in northwestern California; Golightly et
al., 2006). We summarized the composite habitat value for “com-
mon” mammalian prey (>5% frequency in diet; MAMMPREY, see
Appendix A for details) as well as the habitat value for “big” mam-
malian prey (>0.25 kg and >5% frequency in diet; BIGMAMMPREY,
see Appendix A).

Disturbance was represented by the amount of tree planta-
tions, as an indication of recent clear-cut timber harvest, and wild
fires (pre-1990 fires distinguished from fires from 1990 to 2005;
Appendix A) within the 5-km? moving window areas.

2.4. Modeling approach and statistical analysis

We used non-parametric logistic regression, a subset of Gener-
alized Additive Models, with loess smoothing functions (Cleveland,
1985) to model the relationship between detection and non-
detection of fishers at each sample unit and the environmental
variables described above. Each sample unit was geo-referenced
at the center track-plate station. The probability of detection at
each sample unit, given presence, using our 8-visit protocol was
estimated to be 0.98 (Royle et al., 2008).

We tested biologically meaningful univariate and multivariate
candidate models (Burnham and Anderson, 2002). The models rep-
resent our best estimates of what is likely to be important to fishers
at the landscape scale, based on the literature and our experience
studying fishers in the field. As a starting point, we used con-
ceptual models developed from a similar model-building exercise
conducted for fishers in the southern Sierra Nevada (Spencer et al.,
in press). The original set of models was reviewed for their rel-
evance to the Klamath region and the new prey-related models
were added, resulting in a final set of 27 generalized model fami-
lies (Appendix B). Within most model families was a set of closely
related sub-models that generally varied slightly from one another.

We evaluated each model’s fit to the data using the bias-
corrected Akaike’s Information Criteria (AIC.) (Akaike, 1973). We
used weighted model averaging for all models within 2 AIC units
of the highest-ranked model. We calculated importance values for
individual variables by summing the AIC. weights for all models
that contained the variable (Burnham and Anderson, 2002).

2.5. Spatial considerations

Intrasexual territoriality and limited dispersal should result in
negative autocorrelation of fisher detections at distances less than a
home range radius and positive autocorrelation at distances includ-
ing >1 home range. Because sample units were deliberately spaced
to avoid multiple samples per home range, we were interested pri-
marily in the latter. We followed the method of Davis et al. (2007)
and created a spatial autocovariate (SA) by weighting the data from
sampling units within 10, 15, 20, 25, and 30km of the reference
sample unit by the inverse of the squared distance to the refer-
ence sampling unit, normalized by the sum of weights for all units
in the distance region. We summed distance-weighted observa-
tions across all sample units in the neighborhood. We then added
the SA to the best models (see below) to see if AIC. values were
influenced by its inclusion. The 25-km distance produced the best
(SA-included) model; we used this weighting factor in all analy-
ses. We compared AIC, values for the top models with and without
the SA. If a model that included the SA was better than the same
model without the SA, we evaluated the correlation of their pre-
dicted probabilities of fisher presence to determine whether the
SA should be included. If the correlation between the two models
was >0.75, the SA variable was not included.
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2.6. Model evaluation

We evaluated models first by integrating the area under the
receiver operating characteristic curve (Area Under the Curve; AUC)
to evaluate the classification skill of each model (Altman and Bland,
1994; Fielding and Bell, 1997). A model with no classification skill
results in an AUC of <0.5, whereas a perfect model (correctly pre-
dicting all detections and non-detections) would have an AUC of
1.0. We also tested each model using an independent data set con-
sisting of track plate, camera or hair snare surveys (614 sample
units) conducted in our study area from 1989 to 2007. These sur-
vey locations were not associated with our systematic surveys and
were conducted by private or government biologists. One hun-
dred and sixty-seven (27.2%) of the surveys were on private land.
These data were highly clumped in distribution across the study
area and, therefore, had spatial properties that differed from the
model-building data set. To avoid spatial autocorrelation within
the model-testing data set we applied a clustered point thinning
procedure in ArcGIS with a cluster point tolerance of 5 km, which
ensured that no two data points in the model-testing data set were
<5 km apart; a distance similar to the spacing in the original model-
building data set. The thinning procedure resulted in the retention
of 125 locations in the model-testing data set (collected from 1997
to 2007) which we overlaid on a map of the predicted probabilities
of detection (from O to 1) derived from the best-fitting model, We
calculated AUC and correct-classification rates based on the rela-
tionship of the test data survey results to the values predicted by
the model.

We also used the probability of detection in each pixel to
estimate the distribution and abundance of categories of varying
predicted value (Boyce et al., 2002; Hirzel et al., 2006). We gener-
ated the “predicted to expected ratio”, P;/E; (Hirzel et al., 2006), as a
measure of strength of selection. This index is <1 when a probability
classis selected against and >1.0 when it is selected for; a value of 1
indicates no selection. A good model should show a monotonically
increasing P/E curve. The index is sensitive to the number of prob-
ability classes chosen, so we used the moving window approach
advocated by Hirzel et al. (2006). The P/E function served as an index
of habitat selection and a measure of model calibration (Pearce and
Ferrier, 2000). Although our final model predicts the probability of
detection, we assume that areas with a higher probability of detec-
tion fulfill a greater number or quality of life-requisite needs for
fishers and may therefore be used as an index of relative habitat
suitability.

3. Results
3.1. The best-fitting model

We detected fishers at 37.9% (55/145) of the sample units (Fig. 1).
Detections occurred across the study area, but most were in the cen-
tral and southern portions (Fig. 1). The top ranking model included
three variables: PHDWD (Percent Hardwood), INSOL_INDEX (Inso-
lation Index), and DFOR2 (Amount of Dense Forest) (Table 1). Three
additional models were within 2 AIC. units of the top-ranked
model, and included the following variables in decreasing order of
importance weights: Insolation Index, Amount of Dense Forest, Per-
cent Hardwood, ADJ ELEV (Adjusted Elevation), MLFOR (Medium &
Large Trees), STRUCT2 (Structurally Complex Forest), and MAMM-
PREY (Mammalian Prey) (see Appendix A for definitions) (Table 1).

We derived our final model by averaging the top four mod-
els proportional to their AIC. weights. Using the model-building
data set, and a cut-point in predicted value that best separates the
detections from non-detections (0.35), this model had classification
rates of 83.6% and 70.0% for detection and non-detection, respec-

tively (Fig. 2A). The AUC value for this averaged model was 0.858
and the Kappa value 0.504. Importance weights, for individual vari-
ables, indicated that Insolation Index, Amount of Dense Forest, and
Percent Hardwood were most influential (Table 1).

Mammalian Prey, Structurally Complex Forest and Medium &
Large Trees all have positive relationships with predicted value
(Fig.3).In contrast, Insolation Index appears to have a negative rela-
tionship suggesting that the more solar radiation a location receives
the lower the predicted probability of detection. Percent Hardwood
and Adjusted Elevation had quadratic response forms (Fig. 3).

A number of other variables that were not included in the
final model, but which reflect structural or compositional aspects
of the forest that are amenable to management were substan-
tially different when their values at detection and non-detection
sample units were compared (Appendix C). These included: HRE-
PRO_AREAMN (Mean Patch Size of Suitable Reproductive Habitat),
CWHR2_AREAMN (Mean Patch Size of Suitable Habitat), TS_RATIO
(Ratio of Trees to Shrubs), BADHAB2 (Proportion with Poor Cover),
LRGFOR (Proportion with Large-Diameter Trees) and SNOWDPTH
(Maximum Mean Daily Snow Depth).

The 25-km radius neighborhood spatial autocorrelation model
reduced the AIC. value (i.e., improved the fit) only for the fourth
highest-ranked model (Table 1). The correlation of predicted values
of this model, with and without the spatial autocovariate, was very
high (r=0.88) indicating that including the spatial autocovariate
would not improve predictive ability.

The final (averaged) model, when applied throughout the study
area, produced a map with very heterogeneous predicted values
(Fig. 4). Predicted probability of detection values in the eastern
portion of the study area was generally lower, with the excep-
tion of a region in the east-central portion (northwestern Shasta
and southwestern Siskiyou Counties). Areas with high habitat suit-
ability values (>0.60) were discontinuous, especially in the eastern
portion of the study area. However, these areas, when considered
together with the next highest habitat suitability class (0.40-0.59),
appeared to retain considerable continuity from north to south in
the western half of the study area (Fig. 4).

The final model was well calibrated, with the index of selec-
tion indicating negative values (selection against) for the lower
predicted range (i.e., 0-0.40) and positive values for most of the
range of higher probabilities (>0.40; Fig. 5). Interestingly, the areas
of lowest predicted probability were used much less than expected
based on the area they represent in the study area, compared to the
highest predicted probability areas (Fig. 5).

3.2. Test data

The 125 survey locations in the model-testing data set dispro-
portionately occurred in the western and eastern margins of the
study area (Fig. 4) and included 42 (33.6%) locations where fish-
ers were detected. The best model varied substantially in its skill
at predicting the results of these independent surveys. The AUC
value for the test data was 0.676, indicating intermediate skill
at classification. Using a threshold of 0.35 (the same value used
for the original, model-building data set) resulted in 76.2% and
53.0% correct classification for detection and non-detection, respec-
tively. Detections occurred more often in low predicted probability
classes than non-detections occurred in high predicted probability
classes (Fig. 2B); thus there were more errors of commission than
omission.

3.3. Predicted probability of detection as a function of land
ownership and allocation

Comparison of mean predicted probabilities of detection among
land ownership and allocation categories revealed that public
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Table 1
The four habitat models within two AIC units of the top-ranked model, ranked in decreasing order of model fit to the data. w refers to the AIC weight. Superscripts index the
importance weight (Burnham and Anderson, 2002) and list the expanded name for each of the seven variables included in the 4 top-ranked models.

Rank Model AIC, AAIC. w Relative weight
1 PHDWD? INSOL_INDEXP DFOR2¢ 17211 0.00 0.149 1.00
2 MAMMPREY4 INSOL_INDEX DFOR2 MLFOR® 172.61 0.50 0.116 1.29
3 PHDWD INSOL_INDEX STRUCT2f 173.00 0.89 0.096 1.56
4 ADJELEVE INSOL_INDEX DFOR2 173.53 1.42 0.073 2.03

Variable importance weights:
2 Percent Hardwood =0.552.
b Insolation Index =0.829.
¢ Amount of Dense Forest=0.616.
d Mammalian Prey =0.154.
¢ Medium & Large Trees=0.238.
f Structurally Complex Forest=0.160.
& Adjusted Elevation =0.248.

lands had higher mean values (0.397, SD=0.004) than pri- 3.4. The best-fitting “biotic only” model
vate lands (0.292, SD=0.0017). Among the allocations of public

land, Late-Successional Reserves had higher mean predicted val- Our final model represents the average of the four top-ranked
ues (0.488, SD=0.024) than congressionally reserved wilderness models (Table 1), each of whichincluded 1 or more abiotic variables.
(0.384,SD=0.0026). Although this suggests that prediction is improved with a combi-

Fig. 2. The frequency distribution of sample units with detections and non-detections as a function of the predicted class of probability of detection for (A) the data used to
build the model and (B) the data used to test the model.
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Fig. 3. Partial response curves for each of the variables in the top 4 top-ranked models. Response curves represent the relationship between the covariate and the predicted
probability of detection, given the presence of the other variables in its respective model. Tick marks along the x-axis represent the distribution of the data. Response curves
for variables that are in more than 1 of the 4 top-ranked models (e.g., Amount of Dense Forest; DFOR2) represent the variable’s response in the highest-ranking model.

nation of biotic and abiotic variables, applying these models limits
the opportunities that land managers have to alter landscapes to
influence predicted habitat suitability for fishers because abiotic
variables are beyond their influence. Thus, we also identified the

highest-ranking model that was comprised exclusively of biotic
variables. This model included only Percent Hardwood (PHDWD)
and Structurally Complex Forest (STRUCT2) and, although it ranked
23rd, it was only 5.28 AIC units lower than the highest-ranked com-
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Fig. 4. Map of predicted probability of detection for fishers within the study area in interior northern California (dotted line). Each pixel in the base map is represented by 1
of the 4 detection-probability classes, based on the final model, which is an average of the 4 top-ranked models. The results of data used to test the model are represented
by the circles; black circles represent sites where the test data confirmed the presence of a fisher and white circles represent test survey locations where a fisher was not

detected.

bination model. The “biotic only” model also performed almost as
well as our best-fitting model; a 0.35 probability cut-point resulted
in correct-classification rates of 83.63% and 64.4% for fisher detec-
tion and non-detection, respectively.

4. Discussion

Our modeling exercise includes the widest breadth of potential
predictors of any previous effort to model landscape-scale habi-

tat conditions for fishers. The spatial model identifies areas of
important habitat within the Klamath province but also identifies
important areas where connectivity may be limited between the
Klamath Mountains and the Cascade Ranges and the Sierra Nevada
to the southeast. Until now, a model built from local survey data in
interior northern California has not been available to forest man-
agers. Although we view the management application of the model
as its most important function (see below), the variables included
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Fig. 5. The fitted regression line illustrates the relationship between the predicted probability of detection (from 0 to 1) and the strength of selection (Hirzel et al., 2006);
the irregular line represents the actual data. This function evaluates the ability of our model to predict the detection of fishers in our interior northern California study area.

in the best-fitting model may help us to identify habitat character-
istics that may limit fisher habitat suitability at the landscape scale.
Many of the variables included in our final model represent char-
acteristics frequently associated with descriptions of fisher habitat
in western North America. In particular, dense structurally com-
plex mixed hardwood/conifer forests, containing abundant large
and medium-sized trees, have been identified as important habitat
characteristics for fishers (Buskirk and Powell, 1994; Powell and
Zielinski, 1994; Carroll et al., 1999; Buskirk and Zielinski, 2003;
Weir and Harestad, 2003; Zielinski et al., 2004a,b; Davis et al., 2007;
Purcell et al., 2009). The quadratic response forms of Percent Hard-
wood and Adjusted Elevation suggest that fishers typically occur
in mixed hardwood-conifer forests and at intermediate elevations.
The inclusion of elevation in the model probably reflects the selec-
tion of particular forests types, or elevations that do not have deep
snowpack, a relationship that has been demonstrated elsewhere
for fishers (Krohn et al., 1995, 1997) and for which we found a
strong univariate relationship here as well (i.e.,, Maximum Mean
Daily Snow Depth; SNOWDPTH in Appendix C).

Insolation Index, however, is a unique predictor among previous
fisher models (but see Spencer et al., in press) and, given the neg-
ative relationship with predicted detection, is probably included
in the model due to the generally reduced vertical and horizon-
tal structure in less productive forests, or lower prey availability,
at the hotter and drier topographic positions. Because Insolation
Index had the highest importance weight among the covariates,
we believe it warrants inclusion in future studies and additional
consideration in fisher habitat planning. Climate change will likely
interact with the effect of insolation on vegetation and topography,
thus Insolation Index may be an important variable to monitor in
the future.

Our research is the first to attempt to link fisher occurrence
with prey metrics. The inclusion of a predictor based on potential
availability of mammalian prey in the final model was somewhat
surprising because fishers are dietary generalists (Zielinski et al.,
1999) and have more complex spatial relations than species like
the gray wolf (Canis lupus), whose distribution is strongly affected
by the distribution of 1 or 2 key prey species (Mladenoffetal., 1995).
Our mammalian prey indices, however, were created to represent
the collective influence of all the mammalian prey that may be
importantin the fisher diet and, therefore, represented the compos-
ite importance of mammalian prey to a dietary generalist. Similarly
derived indices of prey abundance have been useful at predicting
the occurrence of goshawk (Accipiter gentilis), a forest raptor with
multiple prey species (J. Dunk, Humboldt State University, unpubl.
data). Our prey indices were an attempt to evaluate whether broad
and coarse-scale data on the availability of habitat for mammal prey

would contribute to predicting fisher habitat suitability. We realize,
however, that contributing to predictions is not the same as cause-
and-effect. Nonetheless, we encourage subsequent researchers to
consider these and other potential prey indices when evaluating
fisher habitat.

The “biotic only” model included only two variables, both of
which have been strongly associated with previous descriptions of
fisher habitat: Structurally Complex Forest and Percent Hardwood.
This model includes habitat characteristics that land managers
can control and suggests that increasing the amount and distri-
bution of structurally complex conifer forests, that also include
a significant hardwood component, will contribute to the main-
tenance and/or restoration of fisher habitat in our study area.
Also of note is the strong relationship of several other biotic vari-
ables with predicted probability of detection, in particular some
descriptors of landscape configuration like Mean Patch Size of Suit-
able Habitat (CWHR2_AREAMN) and Proportion of Area with Poor
Cover (BADHAB2) (Appendix C). These variables, together with the
two variables in the biotic only model, can be manipulated by
managers to favor the forest conditions where fishers tend to be
detected.

Besides the obvious heterogeneous nature of the distribution of
predicted habitat (Fig. 4), there was a pattern of higher habitat value
in the western portion of the study area compared to the eastern
portion. Carroll et al. (1999) found a similar pattern and speculated
that it was probably due to the increased moisture and greater for-
est productivity and diversity in the western portion of the study
area. Moreover, the eastern portion of the study area includes some
large non-forested regions (i.e., grassland valleys) that reduce the
amount and connectivity of potential fisher habitat. However, there
is a distinct area of predicted high habitat suitability in the extreme
east-central portion of the study area. Given its potential role as a
“stepping stone” of suitable habitat between populations in north-
western California and the Sierra Nevada, we believe this region
should receive high priority for habitat conservation.

Our model, like all others, has limitations that make it “a sim-
ple approximation of the true probability surface” (Barry and Elith,
2006). The model did not perform particularly well when evalu-
ated using the test data; especially in predicting locations where
we would not expect fishers to be detected. Our model consid-
ered environmental information (for fishers and their mammalian
prey) at a single scale (5km?), and ignored potentially important
variation occurring at other scales, especially the distribution of
important microhabitat features (e.g., Zielinski et al., 2004a) and
the distribution of potential competitors (Campbell, 2004). Missing
covariates are a frequent source of unexplained variation in habitat
models (Barry and Elith, 2006).
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Moreover, compared to the survey data we used to build the
model, the survey data we used to test it had considerably different
spatial and temporal characteristics. The model-testing and model-
building data sets were collected in different portions of the study
area (compare locations of symbols in Figs. 1 and 4); in addition
the model-building data were collected over a shorter period of
time, and based on a random-based systematic sample, compared
to the model-testing data. Nonetheless, if the landscape habitat fea-
tures included in our final model explained most of the variation
in fisher occurrence we would have expected the model to per-
form better when classifying the test data. Carroll et al. (1999) also
tested their fisher landscape using independent data with different
spatial and temporal characteristics, yet demonstrated better clas-
sification skill. The spatial extent of their model was more limited,
however, than our larger and more heterogeneous study area and
may explain why their test data were better classified.

Finally, classification skill in these types of associative models is
not expected to be perfect, primarily because of source-sink popu-
lation dynamics (Pulliam, 1988; Hanski, 1998). There are inherent
limits to predictability, even in the simplest ecological settings
(Melbourne and Hastings, 2009). We agree with Berglund et al.
(2009) that a resource-based definition of habitat suitability must
be stochastic and should allow for species to be absent from suitable
habitat. If fishers are not in stochastic equilibrium with the envi-
ronment, then we will not find fishers everywhere there is suitable
habitat. The substantially better classification by the model of loca-
tions where fishers were detected (76.2%) than where they were
not (53.0%) is consistent with this assumption. Also consistent are
the results of our analysis of the strength of selection (Fig. 5) which
indicated stronger avoidance of habitat conditions with low pre-
dicted value to fishers than selection for habitat with high predicted
value.

4.1. Predicted occurrence as a function of land ownership and
allocation

Public forest lands, which are managed for multiple values, had
higher predicted value to fishers than private lands, which are gen-
erally managed for revenue from timber. Timber management on
private land can be in conflict with the maintenance of structurally
complex forests, so this result was not unexpected. Carroll et al.
(1999) found a similar difference for their fisher landscape habi-
tat model, which was developed for the region that overlaps the
western portion of our study area. We found that public lands des-
ignated as Late-Successional Reserves (LSRs) had higher predicted
value than lands designated as wilderness, a result also reported by
Carroll et al. (1999). Because elevation influenced predicted habitat
suitability in a quadratic fashion, the high-elevation forests where
most wilderness areas occur were of lower value than the interme-
diate elevations where most LSRs occur. In addition, LSRs are more
likely to include productive mixed conifer/hardwood forests char-
acterized by large size class trees, and less deep snowpack, than
high-elevation wilderness areas.

4.2. Applications

Whichever model managers apply, our final model or the biotic
only model, we advocate its use at the appropriate scale for a
number of potential applications which are described below and
illustrated in Fig. 6.

4.2.1. Locating vegetation treatments, timber harvests, and
rights-of-way

Managers of public and private forest lands are asked to pre-
pare vegetation management plans that attempt to protect forests
from the negative effects of wildfire and to propose timber harvests.

Similarly, plans for new public utilities and roads often require con-
sideration of the effects on wildlife habitat value. Our map of the
predicted probability of fisher detection (Fig. 4) provides important
spatially explicitinformation, without which planners could unwit-
tingly do significant damage to fisher habitat by proposing projects
in areas of highest habitat value or in areas of potentially impor-
tant habitat connectivity. Our mapped probability surface could be
consulted during the planning process to determine whether the
objectives of a project could be achieved by relocating it where
it will have fewer adverse effects on fisher habitat suitability.
An example of this occurred when the California Department of
Transportation compared alternative routes for a realignment of
Highway 101 with the predictions of Carroll et al.’s (1999) land-
scape habitat model (W. Zielinski, pers. obs.). Our model may also
be useful for designing land purchases or exchanges, when the
goal is to enhance the amount of fisher habitat or improving its
connectivity.

4.2.2. Development of public-private conservation agreements

The Endangered Species Act enables the U.S. Fish and Wildlife
Service to develop Candidate Conservation Agreements with Assur-
ances (CCAA) with private landowners (U.S. Fish and Wildlife
Service, 1999). A CCAA is developed with a landowner who may
be able to provide a conservation benefit, and receive “assurances”
to be protected from future regulations if the candidate species
becomes listed. For example, our model could be used to identify
the areas of greatest potential conservation benefit to the fisher
and to negotiate reduced timber harvest in one area in exchange
for increased harvest in other areas with lower conservation value.

4.2.3. Monitoring the abundance and distribution of fisher habitat

The model developed here is static, but includes variables that
will change state over time; thus, results can and should be updated
in the future. Thus, like models developed to track changes in stand
or microsite habitat quality (e.g., Zielinski et al., 2006b), our land-
scape habitat model can be rerun with updated environmental data
to yield new predictions. These can then be compared to previous
predictions for the same region (e.g., “mean predicted value for
Shasta County”) to assess changes in fisher habitat conditions over
time.

4.2.4. Reintroduction planning

Fishers have been reintroduced to a number of locations within
their former range (R. Powell, North Carolina State University,
unpubl. data) and habitat modeling is frequently used to choose
among candidate areas for reintroduction (e.g., Lewis and Hayes,
2004). Currently, fishers appear to be relatively well distributed
within our study area, but our empirically derived habitat map
could be used to select appropriate locations live-trap fishers for
reintroductions elsewhere.

4.2.5. Understanding patterns of habitat use

For any of the applications suggested above, the mean values
of specific variables presented in Appendix C can assist manage-
ment decisions. For example, in the CCAA example above (Section
4.2.2), we suggested a negotiated reduction in timber harvest in
one area might exchange for increased harvest in another area with
lower predicted habitat value to fishers. Target values can be devel-
oped for specific habitat variables (e.g., LRGFOR [Density of Large
Trees]) to determine if monitoring guidelines contained in a formal
agreement are being met.

4.2.6. Regional conservation planning

Spatially explicit results from landscape habitat models are
often used to design reserves and other protected areas in large
planning areas (Elith and Leathwick, 2009; Carroll et al., 2010). A
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Fig. 6. Potential applications for the fisher habitat suitability model developed for the study area in interior northern California.

fisher landscape habitat model (Carroll et al., 1999) was used in
combination with a similar model for the northern spotted owl
(Strix occidentalis caurina) (Zabel et al., 2003) to evaluate how exist-
ing and proposed reserves protect predicted habitat value (Zielinski
et al,, 2006a). Our model could serve this same purpose if the des-
ignation of reserves becomes a priority in our study area.
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